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An alternative class of supersymmetries 

B W Keckt  
Physics Department, The University, Southampton SO9 5NH, UK 

Received 30 June 1975 

Abstract. The supersymmetry of Wess and Zumino is generalized to square roots of a class 
of ordinary Lie groups. The case of is studied in detail. We obtain supersymmetric 
equations of motion for fields on a variant of de-Sitter space. The only dimensional parameter 
is the radius of space-time. 

1, Introduction 

A transformation group mixing boson and fermion fields on space-time was recently 
invented by Wess and Zumino (1974). Its properties have been studied notably by 
Salam and Strathdee (1974a, b, c), and the quantum field theory using invariant 
Lagrangians by Iliopoulis and Zumino (1974). 

This paper is concerned with another group that may be used to mix bosons and 
fermions. Wess and Zumino’s group is in a sense the square root of the group T, of 
space-time translations. We give a simple definition for square roots of an ordinary 
Lie group. We find a method for determining whether any exist, and their structure. 
We study in particular a square root of the group 02,3.  
f i  has the particularly simple and useful property that its commutant lies in 

its centre: the commutators of the infinitesimal generators are all translation generators, 
and translations commute with all elements of f i  does not share this 
property, and some of the techniques that work for & do not work for 6. 

A departure from common practice is that space-time is taken to be a variant of 
de-Sitter space: a hyperboloid embedded in a five-dimensional space. Thus, we live 
near the point (0, 0, 0, 0, R),  say, on 

x ~ - x ~ - x : - x : + x ~  = R 2  

and R is large. Maxwell and Dirac equations for this space were obtained by Dirac 
(1935, see also Borner and Diirr 1969 for later references). Instead of the space-time 
symmetry group being the Poincark group, it is 02,3, the former being a contraction 
related to R + 0; of the latter. We should perhaps take the universal covering space 
of this hyperboloid, since otherwise an observer in free fall would find himself at the 
same space-time point after a proper time 2nR (see for example Hawking and Ellis 
1973). Everything we say can be said for either space-time. For calculations it is more 
convenient to work embedded in five-space. 

t Present address: Department of Mathematical Physics, The University of Adelaide, Adelaide 5001, South 
Australia. 
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In 9 2 we establish the existence of &, and find some simple finite-dimensional 
representations in 9 3. Using Salam and Strathdee’s (1974b) method of superfields we 
find two representations on fields in 0 4, and exhibit a Lagrangian in the final section. 

The distinctive feature is that not only does the supersymmetry mix fermion terms 
with boson terms in the Lagrangian, but kinetic terms with mass terms. For R + CO 

we have a massless spinor (two-component) field and a massless vector field. 

2. A class of supersymmetries 

As usual (Wess and Zumino 1974), the generators of our group? G fall into two classes : 
(i) for each real multiplet a of anticommuting numbers (a numbers) a generator T,  
(supergenerators) ; (ii) the generators Tt of a subgroup H ,  essentially a finite-dimensional 
Lie group, where the 5 are a set of commuting (c number) real parameters: 5 = (tA),  
q = TAgA. 

H mixes the generators T,  among themselves : 

[Ts ,  TI = q.Ma 

where 5 .  M = t A M A ,  the MA being matrices (with real c number elements) representing 
the T A  in a space. 

The multiplication table is completed by specifying 

where 5 is linear and antisymmetric in a and b. Thus tA  = iaTAAAp where the AA are 
real symmetric matrices. They must also transform appropriately under H :  A$ must 
be an invariant H tensor. There remains one condition for the above to define a group, 
namely the Jacobi identity 

[[T,, T,I, TI+ [[q, 7 3  T,I+[[T,> TI9 T,I = 0. 

This is satisfied if and only if 
MA?AAkl + MA?AA1j + MAilAAjk = 0. 

This may be written more usefully 

(1) 
where Rijkl is antisymmetric under interchange of k and 1. Clearly R j k l  must be an 
invariant H tensor. 

We now see how to construct square root groups G or H .  The prescription is: 
(i) take a real representation of H ; 

(ii) find an H invariant tensor R i j k l ,  antisymmetric on the last two indices; 
(iii) solve equation (1). 

M J A A ~ I  = R;jl+ RiW 

Of course either of (ii) and (iii) may be impossible. (ii) and (iii) will probably ensure 
that AAij is an invariant tensor, though this may not be so if the solutions of (1) are not 
unique. 

In practice we are interested in G whose relation to the Lorentz group is such that 
a has half-odd-integer spin. In this paper we consider the simplest case, namely that 

t We do not distinguish groups from algebras in notation. 
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a is a Majorana spinor. a being real, we use the Majorana representation of the Dirac 
matrices, so y', iyp, and i d "  are real. 

It follows that Rik' must be Lorentz invariant and we consider the simplest case 
h{(iC-')k'. (The tensor Jf(iC-'Y'- Sf(iC-')ik gives the same right-hand side to ( 1 ) )  
For Wess and Zumino, Rjk' actually vanishes. We suppose that it does not. Equation 
( 1 )  is then a completeness relation for the space of real symmetric four by four matrices, 
so both MAiC and A" span this space?. If we make the further assumption that H is 
represented faithfully (at least locally) on a space it follows that the MA may be taken 
to be proportional to iyp and iop". If we put a4" = lip, g,, = 1, and use Latin indices 
a, b,.  . . for 0, 1 , 2 , 3 , 4  we have 

[gab? a c d l  = 2i((Tadgbe + O b c g a d  - O a c g b d  - O b d g a c )  

so H is 02,3$. The real matrices te = ( i y p y 5 ,  ys)  form a vector multiplet and with (ia",) 
and the unit matrix form a complete set of real four by four matrices. 

= + t a b K b ,  and if we normalize the such that 6va = ybvb for a 
vector I/" then Ma, = -+ioa, and 

We have 

[ q b ,  K d l  = q d g b c +  % g a d -  q c g b d -  T b d g a c .  

The other commutators are then 

where t a b  = AEia,,/?. We could take A: = 2 1 without loss, and in fact the sign appears 
to be unimportant (for instance, I I  is absent from the field equations of motion (7)). 

Note that (2) means that contraction to Wess and Zumino's group, or any group 
with T,  # 0, is not possible. 

It is not difficult to show that G has only one Casimir operator (of any degree), 

= q T j ( C - ' ) ' ' - A q b T a b  

where is defined by T,  = (L#T. 

3. Finitedimensional representations 

A simple action of G is that on G/H.  We express the elements of G as eTm err and specify 
cosets of G / H  by the elements eTe (6 a multiplet of a numbers). 6 transforms linearly 
under non-linearly under supertransformations. Because powers of 6 greater 
than four vanish, the supertransformations can be calculated quite easily as follows. 
We have 8 -+ 8' defined by 

eT= = eTe'h 

t This argument can be made for 2n x 2n matrices for any n, and shows that one can take the square root of 
all the groups Sp,,. A similar argument using complex representations of H leads to square roots of the 
pseudo-unitary groups U,,,". Wess and Zumino actually gave the square root of the product of the conformal 
group and y s  transformations. This is the case m = n = 2. 
2 If we retax the reality condition on the a numbers, we can take instead y p  and id'", in which case H is O,, , ,  
the symmetry of de-Sitter space itself. The number of fields in the Salam-Strathdee superfield is then 256, 
instead of 16 for the present case. This is why we study 02,3. 
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where h E H. The automorphism T,  + - T,, T, + T, allows us to eliminate h :  
e2Tec = eT. e2Te eTa 

or 
e-2Te d(e2Te) = T,  + e-2TeK e2Te. 

Both left- and right-hand sides can be easily calculated in terms of 8,68 and a using the 
commutation relations?. The result is 

68 = [ 1 + &~(5ee  - w e  . K,) - (&188)2]a. (3) 
By considering polynomials in 8 we can obtain some simple finite-dimensional$ 

(linear) representations of G. The polynomials 

(1 + and 1 ++nee + hn2(8e)2 

eKne,(i + ;nee)e, and 1 +:nee + p ( o e ) 2 .  

6t+b = ISa,  

6V” = 2EK“*,  

form a multiplet, as do 

The corresponding representations are 

6s = E* 

and 

6ll/ = ( ~ ~ K F c ‘  + S)a, 6s = $Ai*. 

The former preserves the scalar product $$ - AS2, and the latter preserves 

$t+b -$n&Va-2S2/3n. 

This is in contrast to Wess and Zumino’s group, for which the analogous action 
is 68 = it. There the space of polynomials is not even completely reducible, though 
the subspaces consisting of polynomials of given degree are invariant. 

4. Fields 

Another action of G is that on C/O,,,, where 01,3 is the subgroup of 02,3 generated 
by the Tpv, ie the physical Lorentz group. The cosets may be specified by elements 
eTe eTy where T, = pT4,,. 

Then 8 transforms exactly as in 9 3, independently of y. 

t We have 

and 

I 
e -”Be” = 1 -[. . . [B, A ] .  . . A ]  

“ a 0  n !  

with n commutators in each case. 

3 Of course, really finite only if the a number space is finite dimensional. 
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Under 0 2 , 3 ,  y transforms as a point on the hyperboloid defined in the introduction?. 
Under supertransformations, (0, y )  -+ (e’, y‘) such that 

e-”’ e-T@’ er= eTe eTy = Lorentz transformation 

or 

( 6 e - T ~ ) e T y + e - * y ~ e - * e ~ ~ e T e + ( 6 e - T e )  eTe] eTy = Lorentz generator. 

The square bracket may be calculated using 60 from (3), and commutators. The result 
is where 

t a b  = +kiiaab8 . (1 -&A@) 
(its supercomponent must vanish). It remains to solve 

(de- T ~ )  eTy +e -  TyTr, eTy = Lorentz generator. 

This is simply the transformation rule for y under eTc, so in terms of the coordinates x” 
of five-space we havet 

6xa = +Actiflb6. (1 -&A@). xb. 

We can now use Salam and Strathdee’s method for finding representations on 
fields. That is, we consider polynomials in 0 whose coefficients are now functions of x : 

@(e, x )  = s , ( X ) + o $ , ( x ) + o e .  S , ( X ) $ . 8 K 0 8 .  v , ( X ) + o e .  0 $ ~ ( x ) + ( e e ) 2 .  s,(X). 

The field transformations are 

6S1 = -E+* 

6S, = -.[(&.n++RA)lj, +&I+b2] 
6S3 = .[(&A2 ++&I)$, -(&A + QAA)$J 

sI+bl = - ( 2 S 2 + 2 x , V ” + ~ ~ A S , ) c r  

6 * 2  = (&PAS1 -%AAS2 -4S, - $ ~ K , V “ + A X [ , a b l ~ V b  

- +A PdeX”abiucd Ve)U 

6 v“ = .[(i$flK‘ + L/2X[ab1Kb 4 - &~8bcdeXbi?ci~de)$ 1 -3?‘?$2] 

t If instead of the hyperboloid we use its universal covering space, we replace 
$The connection between x and y may be calculated for example by using the spinor representation of T b  and 
the automorphism T4,, + - T+, T,, -, T$v. 

by its universal covering. 

The latter gives 

6e2Ty = { 5,  ezTY}. 

The former gives 

The result is 
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where X[,db] = &xaab- xbd,), differential operators that act within the hyperboloid, 
A = icfbxaab, and the alternating symbol is fixed by € 0 1 2 3 4  = 1. 

This action may be reduced : if 

With an appropriate decomposition of V“, each of these new multiplets (called vector 
and scalar respectively) is invariant. We use 

1 
0 

va = “1 + xas; + 8; -(Si - 4s;) 

so aaV\ = x , V I  = 0, and 
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(4) 

In intrinsic coordinates this corresponds to the familiar 

V I  and zb contain the same information. 

This reduction has the property that the action remains local in the sense that the 
small changes in the new fields involve a finite number of derivatives of new fields, 
except for “1. 

So far as Lorentz behaviour is concerned, the two multiplets are the same as occur 
in the reduction of the Hermitian superfield for Wess and Zumino’s group. 

The Casimir operator is simply 21[(2/RZ)- 01 on the vector multiplet. On the 
scalar multiplet C is not a function of 0. The scalar multiplet may itself be reduced 
into two multiplets, on each of which C is a function of 0, but on which the action is 
non-local. 

The reader may ask why it is that some such elegant procedure (Salam and Strathdee 
1974a) as reduces the Wess-Zumino superfield cannot be used here. The essence of 
this procedure is the existence of a family of transformations of (e, x )  that commute 
with the group action. The group action is (for Wess and Zumino) 

m : g  -+ m g ;  m , g E G  

that is, left multiplication. Left multiplication by m commutes with right multiplication 
by n, for all m, n E G .  The covariant derivative is the generator of these transformations 
on superfields. In the present case the group action is 

m : g H  + mgH. 

The only transformation commuting with this is 

(e, x) -+ (e, -XI 

corresponding to 

gH + g H a  

where a is diagonal (- 1 ,  1, 1 ,  1 ,  - l), say. This is not helpful in reducing the superfield. 

5. Dynamics 

A little algebra shows, using the constraints (4) on T . 6 ,  that if 

then 
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Stokes' theorem says that if x"f,(x) = 0 then d o a i f "  = 0, where do  is the 02,3 
invariant measure on the hyperboloid. Also, iff" d (x) is antisymmetric, then 

a:(f"bxb) = X[,db,f"b. 

So the equations of motion derived from 9 are supersymmetric. 
9 is the only quadratic invariant up to a derivative that one can construct with the 

vector multiplet if one uses only first derivatives of +'. There are none for the scalar 
multiplet if only first derivatives are used. There is just one for the original (reducible) 
multiplet if only first derivatives of t j l  and + 2  are used, namely 

48 24 12 24 
A I I 9%S:-40S1S2+-;-S~S3+-S;+5~1+1 -~ i1+2+-v ,v" .  

No derivatives occur. This expression may be obtained by a trick as follows. It is 
easy to see that the variation of 

24 
91s, - 20 sz +ys3 

A 

is a derivative. Our expression (6) is the corresponding expression for cDz 
Dirac (1935) suggested the Lagrangian 

t i (  
with real m. Near (0, 0, O,O, R), and for + oscillating over distances of the order l/m 
or less, this is approximately 

+$(i a- m)+ 

so m is the mass. 
9 gives, for R + CO, a massless spinor field and a massless vector field. It is not 

sensible to ask what the masses are for finite R ,  because the Casimir operator p 2  does 
not exist. One can see this as follows. The equations of motion 

(+A + l)+ = 0 

a;T"b = 0 (7) 
imply 

(U-$)+ = 0 

If we use the first four components of xu as intrinsic coordinates we have 

Finally, we mention the question of interactions. There are no superficially re- 
normalizable and supersymmetric interactions for vector multiplets. However, the 
work of Ferrara and Zumino (1974) and Salam and Strathdee (1974~) on combining 
internal symmetries with supersymmetries (Wess and Zumino's, and supergauge) shows 
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how the situation m a y  be more complicated. There the interaction is only superficially 
renormalizable in a particular gauge, which breaks the Wess-Zumino supersymmetry 
as well as the supergauge symmetry. A curious point is that, in this gauge, the quadratic 
part of their Lagrangian is exactly the same as the R + cc limit of our Lagrangian ( 5 )  
(with appropriate rescaling of S’ and xb). 

To summarize, we have shown the existence ofan alternative class of supersymmetries, 
one of which has a possible physical application, and contains a mechanism for providing 
even stronger relations between coupling constants than occur with the supersymmetry 
of Wess and Zumino. As is the case with the latter, the outstanding problem is to find 
an application in which the fields can be physically identified. 
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